Дататон МТМ. Задача №4. Детектирование дорожной разметки

Финиш 25.03 23:59

Задача

Детектирование дорожной разметки

Дано

Набор изображений, на которых изображена дорога с нанесенной разметкой

Задание

Обработать изображения, извлечь параметры, которые помогут выделить разметку и использовать эти признаки для получения траектории движения в виде точек центра дороги.

Выполнение

В папке с заданием находятся вспомогательные файлы и инструкции. Для каждой функции даны комментарии, которые описывают её назначение, входные параметры и формат выходных данных. Внимательно ознакомьтесь с ними!

Скачать папку с заданием >>

Для работы с проектом необходимо установить python 3 версии, opencv 3 версии, а также библиотеку numpy. Все функции для распознавания представлены в файле eval.py . Их можно изменять. Названия функций и самого файла при этом должны оставаться неизменными. Если вы используете нейросетевые или другие модели, загрузите их в файле eval.py в специально обозначенном месте. Выборка, с которой работает алгоритм, изменяется в файле main.py: функция load_data и соответственно массивы данных, возвращаемые из этой функции. Файл helpers.py изменению не подлежит!

Обучающий видео-курс >>

Проверка кода осуществляется на тестовых данных: изображениях, не включенных в тренировочную и валидационную выборки. Основной метрикой оценки является совпадение координат детектируемых точек с координатами реальных точек. Сравнение расположения точек для каждого изображения производится по формуле: (Σ(|x_real - x_predicted|)/(x_max/2))/y_count, где: x_real - реальное значение координаты хб x_predicted - предсказанное (полученное вашим детектором) значение координаты х x_max - максимальное значение х (ширина изображения, 360 для изображений выборки) y_count - количество точек по оси y (зависит от ширины изображения, 200 для изображений выборки) Для оценки точности на всех изображениях сумма всех результатов делится на количество изображений. При одинаковой точности оценивается также скорость работы классификатора.

Решением является только файл eval.py. Загружать необходимо только его и модели, используемые для детектирования.



Очки Участник Дата Команда Город Учебное заведение
0.999 Андрей Нечесов 23.03.2020 19:54 Радиус-вектор Москва ГБОУ Школа №491 "Марьино"
0.999 Валентин Стриженко 25.03.2020 15:55 Москва Школа 354
0.999 Никита Шалов 25.03.2020 17:26 Запуск Windows Moscow Школа №354 им. Д.М. Карбышева
0.999 Никита Коршунов 25.03.2020 17:55 Sirius Москва Школа №1547
0.999 Егор Свирин 23.03.2020 12:39 Радиус-вектор Москва ГБОУ Школа №491 "Марьино"
0.993 Гриша Селезнев 25.03.2020 17:13 Sirius Москва Школа №1547
0.993 Денис Молотков 25.03.2020 16:39 Sirius Москва Школа №1547
0.098 Амир Давлетшин 24.03.2020 13:02 Разверт Уфа школа №35
0.097 Василий Белкин 25.02.2020 11:03 Москва